3.101 \(\int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx\)

Optimal. Leaf size=125 \[ \frac {(4 A-29 B) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {B \tanh ^{-1}(\sin (c+d x))}{a^3 d}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}-\frac {(2 A-7 B) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2} \]

[Out]

B*arctanh(sin(d*x+c))/a^3/d+1/5*(A-B)*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*sec(d*x+c))^3-1/15*(2*A-7*B)*tan(d*x+c)/a
/d/(a+a*sec(d*x+c))^2+1/15*(4*A-29*B)*tan(d*x+c)/d/(a^3+a^3*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {4019, 4008, 3998, 3770, 3794} \[ \frac {(4 A-29 B) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {B \tanh ^{-1}(\sin (c+d x))}{a^3 d}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}-\frac {(2 A-7 B) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^3*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^3,x]

[Out]

(B*ArcTanh[Sin[c + d*x]])/(a^3*d) + ((A - B)*Sec[c + d*x]^2*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) - ((2*A
 - 7*B)*Tan[c + d*x])/(15*a*d*(a + a*Sec[c + d*x])^2) + ((4*A - 29*B)*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d
*x]))

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3998

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x
_Symbol] :> Dist[B/b, Int[Csc[e + f*x], x], x] + Dist[(A*b - a*B)/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]

Rule 4008

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(b^2*(2*
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4019

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/
(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx &=\frac {(A-B) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {\int \frac {\sec ^2(c+d x) (2 a (A-B)+5 a B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx}{5 a^2}\\ &=\frac {(A-B) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(2 A-7 B) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {\int \frac {\sec (c+d x) \left (-2 a^2 (2 A-7 B)-15 a^2 B \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{15 a^4}\\ &=\frac {(A-B) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(2 A-7 B) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(4 A-29 B) \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^2}+\frac {B \int \sec (c+d x) \, dx}{a^3}\\ &=\frac {B \tanh ^{-1}(\sin (c+d x))}{a^3 d}+\frac {(A-B) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(2 A-7 B) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(4 A-29 B) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.93, size = 197, normalized size = 1.58 \[ \frac {\sec \left (\frac {c}{2}\right ) \cos \left (\frac {1}{2} (c+d x)\right ) \left (5 (4 A-29 B) \sin \left (\frac {d x}{2}\right )+10 A \sin \left (c+\frac {3 d x}{2}\right )+2 A \sin \left (2 c+\frac {5 d x}{2}\right )+75 B \sin \left (c+\frac {d x}{2}\right )-95 B \sin \left (c+\frac {3 d x}{2}\right )+15 B \sin \left (2 c+\frac {3 d x}{2}\right )-22 B \sin \left (2 c+\frac {5 d x}{2}\right )\right )-240 B \cos ^6\left (\frac {1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )\right )}{30 a^3 d (\cos (c+d x)+1)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^3*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^3,x]

[Out]

(-240*B*Cos[(c + d*x)/2]^6*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]
]) + Cos[(c + d*x)/2]*Sec[c/2]*(5*(4*A - 29*B)*Sin[(d*x)/2] + 75*B*Sin[c + (d*x)/2] + 10*A*Sin[c + (3*d*x)/2]
- 95*B*Sin[c + (3*d*x)/2] + 15*B*Sin[2*c + (3*d*x)/2] + 2*A*Sin[2*c + (5*d*x)/2] - 22*B*Sin[2*c + (5*d*x)/2]))
/(30*a^3*d*(1 + Cos[c + d*x])^3)

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 183, normalized size = 1.46 \[ \frac {15 \, {\left (B \cos \left (d x + c\right )^{3} + 3 \, B \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + B\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (B \cos \left (d x + c\right )^{3} + 3 \, B \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + B\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (A - 11 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (2 \, A - 17 \, B\right )} \cos \left (d x + c\right ) + 7 \, A - 32 \, B\right )} \sin \left (d x + c\right )}{30 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/30*(15*(B*cos(d*x + c)^3 + 3*B*cos(d*x + c)^2 + 3*B*cos(d*x + c) + B)*log(sin(d*x + c) + 1) - 15*(B*cos(d*x
+ c)^3 + 3*B*cos(d*x + c)^2 + 3*B*cos(d*x + c) + B)*log(-sin(d*x + c) + 1) + 2*(2*(A - 11*B)*cos(d*x + c)^2 +
3*(2*A - 17*B)*cos(d*x + c) + 7*A - 32*B)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3
*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

giac [A]  time = 0.67, size = 147, normalized size = 1.18 \[ \frac {\frac {60 \, B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {60 \, B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} + \frac {3 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 10 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 20 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 105 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{15}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(60*B*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - 60*B*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3 + (3*A*a^12*ta
n(1/2*d*x + 1/2*c)^5 - 3*B*a^12*tan(1/2*d*x + 1/2*c)^5 + 10*A*a^12*tan(1/2*d*x + 1/2*c)^3 - 20*B*a^12*tan(1/2*
d*x + 1/2*c)^3 + 15*A*a^12*tan(1/2*d*x + 1/2*c) - 105*B*a^12*tan(1/2*d*x + 1/2*c))/a^15)/d

________________________________________________________________________________________

maple [A]  time = 0.75, size = 159, normalized size = 1.27 \[ \frac {A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) B}{d \,a^{3}}-\frac {7 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) B}{d \,a^{3}}+\frac {A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}}-\frac {B \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}}+\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{6 d \,a^{3}}-\frac {B \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \,a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x)

[Out]

1/4/d/a^3*A*tan(1/2*d*x+1/2*c)-1/d/a^3*ln(tan(1/2*d*x+1/2*c)-1)*B-7/4/d/a^3*B*tan(1/2*d*x+1/2*c)+1/d/a^3*ln(ta
n(1/2*d*x+1/2*c)+1)*B+1/20/d/a^3*A*tan(1/2*d*x+1/2*c)^5-1/20/d/a^3*B*tan(1/2*d*x+1/2*c)^5+1/6/d/a^3*tan(1/2*d*
x+1/2*c)^3*A-1/3/d/a^3*B*tan(1/2*d*x+1/2*c)^3

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 187, normalized size = 1.50 \[ -\frac {B {\left (\frac {\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{3}} + \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{3}}\right )} - \frac {A {\left (\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/60*(B*((105*sin(d*x + c)/(cos(d*x + c) + 1) + 20*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5)/a^3 - 60*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^3 + 60*log(sin(d*x + c)/(cos(d*x + c) +
 1) - 1)/a^3) - A*(15*sin(d*x + c)/(cos(d*x + c) + 1) + 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c
)^5/(cos(d*x + c) + 1)^5)/a^3)/d

________________________________________________________________________________________

mupad [B]  time = 1.98, size = 124, normalized size = 0.99 \[ \frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (\frac {A-B}{12\,a^3}+\frac {A-3\,B}{12\,a^3}\right )}{d}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {A-B}{4\,a^3}+\frac {A-3\,B}{4\,a^3}-\frac {A+3\,B}{4\,a^3}\right )}{d}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (A-B\right )}{20\,a^3\,d}+\frac {2\,B\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)^3*(a + a/cos(c + d*x))^3),x)

[Out]

(tan(c/2 + (d*x)/2)^3*((A - B)/(12*a^3) + (A - 3*B)/(12*a^3)))/d + (tan(c/2 + (d*x)/2)*((A - B)/(4*a^3) + (A -
 3*B)/(4*a^3) - (A + 3*B)/(4*a^3)))/d + (tan(c/2 + (d*x)/2)^5*(A - B))/(20*a^3*d) + (2*B*atanh(tan(c/2 + (d*x)
/2)))/(a^3*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {A \sec ^{3}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec ^{4}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**3,x)

[Out]

(Integral(A*sec(c + d*x)**3/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x) + Integral(B*sec(c
+ d*x)**4/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x))/a**3

________________________________________________________________________________________